

QA-12DI-4DO

Vai alla pagina QA-12DI-4DO per novità, aggiornamenti e download

SOMMARIO

Panoramica del prodotto	3
Caratteristiche tecniche	4
Caratteristiche elettriche	4
Caratteristiche comunicazione	4
Dati generali	5
Codice d'ordine	5
Connessione e installazione	6
Terminazione BUS RS485	8
LED segnalazione frontali	9
Funzioni del prodotto	9
Modbus	9
Ingressi digitali	9
Uscite digitali	9
Memorizzazione uscite e totalizzatori	9
Periodimetro	9
Configurazione del dispositivo	10
Impostazione indirizzi Modbus RTU e baudrate via dip-switch	10

Configurazione delle funzionalità	. 10
Q-WIZARD	10
Master Modbus di terze parti	11
Funzione 03 esadecimale (Lettura dei registri di mantenimento)	11
Funzione 06 esadecimale (Scrittura di un singolo registro di mantenimento)	12
Funzione 10 esadecimale (Scrittura di registri multipli)	13
Aggiornamento firmware	13
Mappa dei registri	14

QA-12DI-4DO

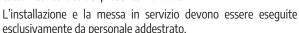
AVVISI E AVVERTENZE DI SICUREZZA

Di sequito sono elencate avvertenze di sicurezza ed informazioni da osservare per garantire la propria sicurezza personale e prevenire danni materiali.

La mancata osservanza dell'avvertenza può provocare **morte o gravi lesioni personali**.

È necessario rispettare le normative nazionali durante l'installazione e la scelta dei materiali per le linee elettriche

La mancata osservanza dell'avvertenza potrebbe causare **danni** materiali o gravi lesioni personali.


Riparazioni e modifiche devono essere eseguiti esclusivamente dal produttore. È vietato aprire la custodia e apportare modifiche allo strumento. In caso di manomissione del dispositivo decade il diritto di garanzia.

Il costruttore **declina ogni responsabilità in merito alla sicurezza** elettrica in caso di utilizzo improprio dell'apparecchio.

Prima di eseguire qualsiasi operazione è obbligatorio leggere tutto il contenuto del presente manuale.

Prima della messa in servizio verificare che:

- non vengano superati i valori massimi di tutti i collegamenti, vedere il datasheet del prodotto;
- i cavi di collegamento non siano danneggiati e che non siano sotto tensione durante il cablaggio;
- la direzione del flusso di potenza e la rotazione delle fasi siano

Durante l'installazione, assicurarsi che sia installato un interruttore o un disgiuntore in prossimità del prodotto e che sia facilmente accessibile agli operatori.

Lo strumento deve essere disinstallato se non è più possibile garantire un funzionamento sicuro (ad es. danni visibili). In questo caso tutti i collegamenti devono essere scollegati. Lo strumento deve essere restituito alla fabbrica o ad un centro di assistenza autorizzato.

ATTENZIONE: campi magnetici di elevata intensità possono variare i valori misurati dal trasformatore. Evitare l'installazione nei pressi di: magneti permanenti, elettromagneti o masse di ferro. Se si riscontrano irregolarità, riorientare o spostare il dispositivo nella zona più appropriata.

Se le avvertenze non sono rispettate, il dispositivo potrebbe **danneggiarsi o non funzionare** come previsto.

Si prega di notare che i dati sulla targhetta devono essere rispettati.

Il prodotto descritto in questo documento può essere utilizzato solo per l'applicazione specificata. È necessario rispettare i dati di alimentazione massima e le condizioni ambientali specificate nel datasheet di prodotto. Per il corretto e sicuro funzionamento dell'apparecchio sono necessari un trasporto e uno stoccaggio adeguati, nonché un montaggio, un'installazione, una movimentazione e una manutenzione professionali.

L'utilizzo in condizioni ambientali diverse dai limiti dichiarati, l'applicazione di segnali, tensioni correnti oltre i limiti dichiarati, possono provocare deviazioni anche significative delle tolleranze di misura dichiarate, anche irreversibili.

Il contenuto di questo documento è stato controllato per garantirne l'accuratezza, tuttavia potrebbe contenere errori o incongruenze e non è possibile garantirne la totale completezza o la correttezza.

Il documento è regolarmente soggetto a revisioni ed aggiornamenti. QEED si riserva la facoltà di apportare in qualsiasi momento modifiche al prodotto e/o alla relativa documentazione tecnica, in ottica di miglioramento continuo della qualità. Accertarsi di consultare la versione aggiornata della documentazione disponibile sul sito web

www.qeed.it

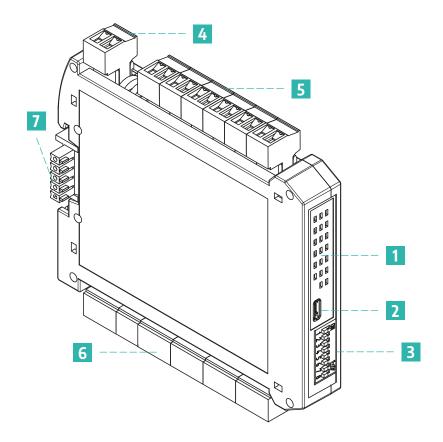
In caso di errori o mancanza di informazioni necessarie in questo documento, vi preghiamo di informarci via e-mail a:

technical@qeed.it

Smaltimento dei rifiuti elettrici ed elettronici (applicabile nell'Unione Europea e negli altri paesi con servizio di raccolta differenziata). Il simbolo presente sul prodotto o sulla sua confezione indica che il prodotto non verrà trattato come rifiuto domestico. Sarà invece consegnato al centro di raccolta autorizzato per il riciclo dei rifiuti elettrici ed elettronici. Assicurandovi che il prodotto venga smaltito in modo adeguato, eviterete un potenziale impatto negativo sull'ambiente e la salute umana, che potrebbe essere causato da una gestione non conforme dello smaltimento del prodotto. Il riciclaggio dei materiali contribuirà alla conservazione delle risorse naturali. Per ricevere ulteriori informazioni più dettagliate Vi invitiamo a contattare l'ufficio preposto nella Vostra città, il servizio per lo smaltimento dei rifiuti o il fornitore da cui avete acquistato il prodotto.

PANORAMICA DEL PRODOTTO

Il QA-12DI-4DO è un modulo I/O slave dotato di 12 ingressi digitali optoisolati e 4 uscite a relay SPDT 5A - 230V_{AC}. Tutti gli ingressi possono essere impostati come totalizzatori o semplici contatti, per i quali sono previste un'uscita ausiliaria 12V per rilevamento contatti puliti e GND di richiusura per i contatti attivi. Il numero massimo di conteggi è pari a 2³² ed è disponibile un flag di underflow/overflow per segnalare il raggiungimento del numero massimo di conteggi.


Può essere alimentato sia in AC che in DC.

È dotato di completa separazione galvanica tra alimentazione, interfaccia seriale e USB, ingressi ed uscite.

LED di segnalazioni alimentazione/errore/comunicazione/stato ingressi ed uscite sulla parte frontale della scocca.

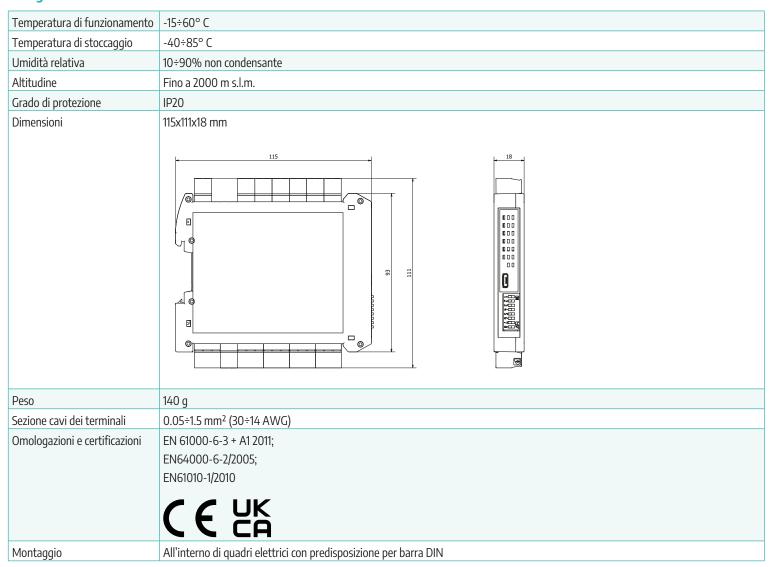
Interfaccia seriale RS485 per la comunicazione con protocollo Modbus RTU sia da software di configurazione Q-WIZARD (scaricabile qui), sia con master Modbus di terze parti agendo sui registri della mappa di registri.

Predisposto per montaggio su barra DIN con morsetto T-BUS (opzionale) per connessione rapida con possibilità di inserimento/rimozione a caldo.

- 1 LED di segnalazione
- 2 Porta microUSB
- 3 DIP switch di configurazione
- 4 Morsetti alimentazione
- 5 Morsetti uscite
- 7 Morsetti ingressi e interfaccia RS485
- 8 Morsetto T-BUS per alimentazione e comunicazione Modbus RTU (opzionale)

CARATTERISTICHE TECNICHE

Caratteristiche elettriche


Alimentazione	10÷40 V _{DC} o 20÷28 V _{AC} @50/60Hz	
Assorbimento	250mA max	
Isolamenti	Ingressi digitali, USB, interfaccia seriale RS485 e alimentazione galvanicamente isolate tra di loro a 1,5 kV Uscite relay isolate 4 kV	
Ingressi	#12 ingressi digitali, tipologia PNP con comune in negativo e contatore a 32 bit e frequenza di campionamen massima 10kHz	
	Intervallo tensione di ingresso per ingressi attivi 12-24VDC	
	Presenza terminale a 12V per rilevamento di contatti puliti	
Uscite	#4 digitali a relay SPDT 5 A - 250 V _{AC}	
Interfacce di comunicazione	RS485 Modbus RTU	
	Porta microUSB	
Interfaccia visiva	LED di segnalazione	

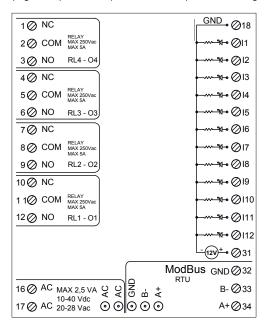
Caratteristiche comunicazione

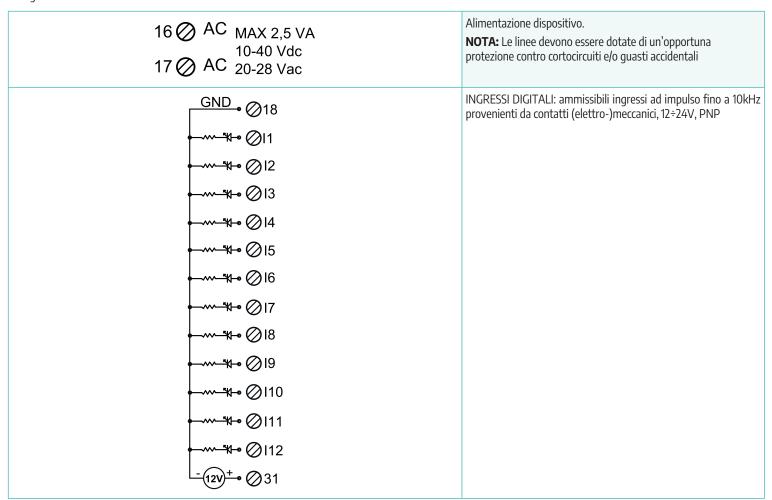
Protocollo	Modbus RTU	
Baudrate	1200÷115200 bps (default 9600)	
Indirizzi	1÷247 (default 1)	
Formato dati	1 bit di start, 8 bit dati, parità NO/ODD/EVEN (default NO parità)	
Ritardo alla risposta	1÷1000ms	
Connessione	Tramite morsetto estraibile, T-BUS o micro USB	

Dati generali

Codice d'ordine

Prodotto:	QA-12DI-4DO
Prodotto senza logo:	QA-12DI-4DO-T-NL
T-BUS:	QA-TBUS-17,5 larghezza 17,6mm
	QA-TBUS-22 larghezza 22,6mm




CONNESSIONE E INSTALLAZIONE

Lo strumento è sviluppato per essere installato all'interno di quadri elettrici e montato su guida DIN, con o senza l'ausilio del connettore T-BUS per l'interfacciamento di più strumenti con riduzione dei cablaggi.

Tutti i morsetti di connessione sono visualizzati sulla tampografia riportata sul prodotto e corrispondono alla figura seguente:

Di seguito la descrizione delle funzionalità dei morsetti:

 NC COM MAX 250Vac MAX 5A NO RL4 - O4 NC COM MAX 250Vac MAX 5A NO RL3 - O3 NC NC COM RELAY MAX 250Vac MAX 5A NO RL2 - O2 NC NC NO RL2 - O2 NC COM MAX 250Vac MAX 250Vac MAX 5A NO RL1 - O1 	USCITE DIGITALI: n°4 relay in scambio SPDT 5A / 250Vac RL1 - 01: uscita digitale #1 RL2 - 02: uscita digitale #2 RL3 - 03: uscita digitale #3 RL4 - 04: uscita digitale #4
ModBus _{GND}	Collegamento RS485 Modbus RTU: morsetti 32, 33 (B-), 34 (A+)
O AC O GND O A+	Collegamento T-BUS (necessita dell'accessorio T-BUS opzionale): è possibile apporre l'accessorio T-BUS sulla base del modulo per portare sia l'alimentazione sia la comunicazione seriale (vedi immagine sotto). Il numero di moduli supportati dal bus è in funzione dell'alimentatore utilizzato (verificare gli assorbimenti dei moduli)

Figura 1: installazione su barra DIN con T-BUS

Terminazione BUS RS485

Al fine di evitare sbilanciamenti nel bus di trasmissione, è consigliabile inserire una resistenza di terminazione all'inizio del bus RS485 (tipicamente sull'adattatore USB-RS485) ed alla fine (tipicamente in concomitanza dell'ultimo slave – attivabile anche via dip-switch). È opportuno scegliere resistenze da 120Ω con tolleranza 1%, che equivalgono all'impedenza tipica dei cavi RS485.

Sotto delle immagini a puro titolo indicativo:

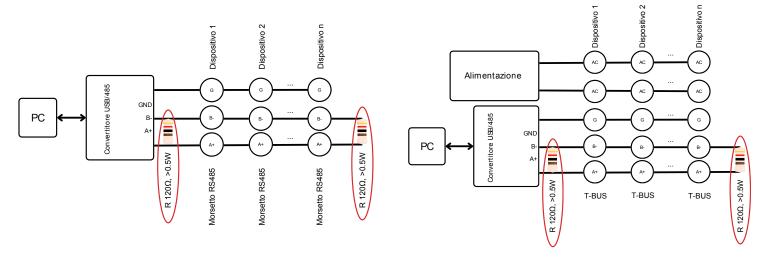


Figura 2: Terminazione bus RS485

LED SEGNALAZIONE FRONTALI

Funzione	Stato	Significato	
Power (verde)	Acceso	Alimentazione presente	
Fail (giallo)	Acceso	Presenza di una o più anomalie/errori sul modulo (configurabile da Q-WIZARD o agendo sui registri dedicati pagina 14)	
RX (rosso)	Lampeggiante	Il sistema sta ricevendo dati dalla RS485	
TX (rosso)	Lampeggiante	Il sistema sta trasmettendo dati sulla RS485	
0104 (verde)	Acceso	Uscita digitale attiva	
11112(verde)	Acceso	Ingresso digitale attivo	

FUNZIONI DEL PRODOTTO

Utilizzando il software di configurazione o agendo sui registri dedicati, si possono configurare le seguenti funzioni.

Modbus

Sono impostabili indirizzo, baudrate, parità e bit di stop.

Ingressi digitali

Possibilità di abilitare in conteggio sul fronte di salita o discesa [Reg. 40079], se conteggiare incrementando o decrementando [Reg. 40092] e impostare 6 livelli di filtraggio [Reg. 40080 - 40091] per variare la velocità di campionamento per mitigare eventuali rimbalzi dei contatti.

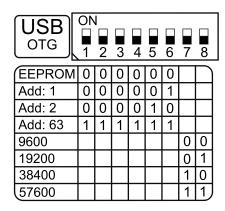
Uscite digitali

Lo stato delle uscite digitali può anche essere forzato dall'operatore [Reg. 40011].

Memorizzazione uscite e totalizzatori

Possibilità di abilitare il salvataggio in memoria non volatile dei totalizzatori e degli stati delle uscite in modo siano mantenute al riavvio dello strumento [Reg. 40093].

Periodimetro


A partire dalla revisione FW 04, impostando bit[12]=1 del reg. 40079, gli ingressi digitali da 1 a 6 anziché essere di totalizzatori possono essere impostati per calcolare il periodo del segnale di ingresso misurando il tempo in cui l'ingresso digitale rimane pari al valore alto e al valore basso.

CONFIGURAZIONE DEL DISPOSITIVO

Impostazione indirizzi Modbus RTU e baudrate via dip-switch

Attraverso il DIP-switch presente sul frontale del modulo, è possibile modificare l'indirizzo Modbus RTU ed il baudrate. Nel caso in cui tutti i DIP-switch siano a zero, il modulo prenderà la configurazione da EEPROM, viceversa quella impostata tramite DIP-switch.

Indirizzi maggiori a 63 e valori di baudrate diversi da quelli selezionabili da DIP-switch sono configurabili tramite il software di configurazione Q-WIZARD o con le funzioni Modbus RTU sotto riportate agendo sui registri dedicati.

Alzando il DIP switch 1 visibile dal foro presente sulla custodia del prodotto (visibile nella figura più sotto), si attiva la terminazione dinamica (120Ω) del Modbus RTU (da eseguire solo sull'ultimo modulo della catena – vedi Figura 2 al paragrafo Terminazione bus RS485).

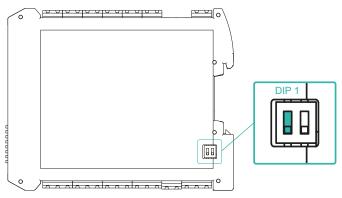


Figura 3: Dip-switch

NOTA: Per rendere attive tutte le modifiche via DIP-switch è necessario togliere e ridare alimentazione al dispositivo.

Configurazione delle funzionalità

È possibile collegarsi al prodotto attraverso un dispositivo seriale RS485 come il nostro Q-USB485 oppure utilizzando la porta microUSB.

Nel caso di utilizzo della microUSB per la sola configurazione l'alimentazione principale dai morsetti non è necessaria, mentre deve essere presente per avere tutte le funzionalità attive (monitoraggio in tempo reale); nel caso di configurazione da morsetti l'alimentazione deve sempre essere fornita.

La configurazione del modulo può essere effettuata con il nostro software di configurazione Q-WIZARD o con qualsiasi master Modbus di terze parti agendo sui registri della mappa riportata a pagina 14.

Q-WIZARD

Tramite il software di configurazione Q-WIZARD (scaricabile da qui) è possibile configurare tutti i parametri del dispositivo seguendo i semplici passaggi auto esplicativi.

Oltre alla configurazione dei vari parametri, ingressi ed uscite, il Q-WIZARD permette anche il monitoraggio in tempo reale delle variabili del dispositivo.

Master Modbus di terze parti

In alternativa, si può mettere in comunicazione il prodotto direttamente con un Master Modbus RTU di terze parti con impostazioni di comunicazione in accordo con la configurazione dei dip-switch (nel caso di utilizzo della microUSB le impostazioni dei DIP sono ininfluenti).

Il protocollo di comunicazione supportato è il Modbus RTU Slave:

- Connessioni Modbus RTU: A+ e B- come previsto dagli standard Modbus RTU
- Funzioni Modbus RTU supportate: 03 esadecimale (lettura registri multipli, max 100), 06 esadecimale (scrittura singola), 10 esadecimale (scrittura registri multipli)
- la numerazione degli indirizzi Modbus RTU è con convenzione "1 BASED" (standard) ma il registro fisico è a base 0; all'indirizzo logico, per es. 40010, corrisponde l'indirizzo fisico #9, come previsto dagli standard Modbus RTU

NOTA: tutti i cambi di impostazione dei parametri di configurazione devono essere seguiti dal comando di salvataggio in flash 0xC1C0 = Flash settings save command nel registro 40121; i cambi dei parametri di comunicazione del dispositivo in aggiunta devono anche essere seguiti anche dal comando 0xC1A0 = Reboot command nel registro 40121.

In questo caso tutte le configurazioni del dispositivo saranno eseguite agendo sulla Mappa dei Registri Modbus RTU disponibile nell'ultimo capitolo di questo documento utilizzando le funzioni:

- Lettura dei registri di mantenimento (funzione 03 esadecimale)
- Scrittura di un singolo registro di mantenimento (funzione 06 esadecimale)
- Scrittura di registri multipli (funzione 10 esadecimale)

Funzione 03 esadecimale (Lettura dei registri di mantenimento)

Questa funzione viene utilizzata per leggere il contenuto di un blocco continuo di registri di mantenimento (word). Il frame di richiesta specifica l'indirizzo del registro di partenza e il numero di registri da leggere. È possibile leggere al massimo 120 registri (parole) con una singola richiesta, quando non diversamente specificato. I dati del registro nel messaggio di risposta sono impacchettati come due byte per registro (word), con i contenuti binari allineati a destra all'interno di ciascun byte. Per ogni registro, il primo byte contiene i bit di ordine superiore (MSB) e il secondo contiene i bit di ordine inferiore (LSB).

Frame di richiesta			
Descrizione	Lunghezza	Valore	Note
Indirizzo fisico	1 byte	1 to F7 HEX (1 to 247)	
Codice funzione	1 byte	03 HEX	
Indirizzo iniziale	2 bytes	0000 to FFFF HEX	Ordine bytes: MSB, LSB
Quantità di registri (N word)	2 bytes	1 to 10 HEX (1 to 16)	Ordine bytes: MSB, LSB
CRC	2 bytes		

Frame di risposta (azione corretta)			
Descrizione	Lunghezza	Valore	Note
Indirizzo fisico	1 byte	1 to F7 HEX (1 to 247)	
Codice funzione	1 byte	03 HEX	
Quantità di byte richiesti	1 byte	N word * 2	
Valore del registro	N*2 bytes		Ordine bytes: MSB, LSB
CRC	2 bytes		

Frame di risposta (azione non corretta)			
Descrizione	Lunghezza	Valore	Note
Indirizzo fisico	1 byte	1 to F7 HEX (1 to 247)	Possibile eccezione:
Codice funzione	1 byte	83 HEX	01: funzione illegale
Codice di eccezione	1 byte	01, 02, 03, 04 (see note)	02: indirizzo dati illegale
CRC	2 bytes		03: valore dati illegale
	,		04: guasto del dispositivo slave

Funzione 06 esadecimale (Scrittura di un singolo registro di mantenimento)

Questa funzione viene utilizzata per scrivere un singolo registro di mantenimento. Il frame di richiesta specifica l'indirizzo del registro (word) da scrivere e il suo contenuto.

La risposta corretta è un'eco della richiesta, restituita dopo che il contenuto del registro è stato scritto.

Frame di richiesta			
Descrizione	Lunghezza	Valore	Note
Indirizzo fisico	1 byte	1 to F7 HEX (1 to 247)	
Codice funzione	1 byte	06 HEX	
Indirizzo iniziale	2 bytes	0000h to FFFF HEX	Ordine bytes: MSB, LSB
Valore del registro	2 bytes	0000h to FFFF HEX	Ordine bytes: MSB, LSB
CRC	2 bytes		

Frame di risposta (azione corretta)			
Descrizione	Lunghezza	Valore	Note
Indirizzo fisico	1 byte	1 to F7 HEX (1 to 247)	
Codice funzione	1 byte	06 HEX	
Indirizzo iniziale	2 bytes	0000h to FFFF HEX	Ordine bytes: MSB, LSB
Valore del registro	2 bytes	0000h to FFFF HEX	Ordine bytes: MSB, LSB
CRC	2 bytes		

Frame di risposta (azione non corretta)							
Descrizione	Lunghezza	Valore	Note				
Indirizzo fisico	1 byte	1 to F7 HEX (1 to 247)	Possibile eccezione:				
Codice funzione	1 byte	86 HEX	01: funzione illegale				
Codice di eccezione	1 byte	01, 02, 03, 04 (see note)	02: indirizzo dati illegale				
CRC	2 bytes		03: valore dati illegale				
	,		04: guasto del dispositivo slave				

Funzione 10 esadecimale (Scrittura di registri multipli)

Questa funzione viene utilizzata per scrivere un blocco di registri contigui (massimo 2). I valori richiesti da scrivere sono specificati nel campo dati della richiesta. I dati sono impacchettati come due byte per registro.

La risposta corretta restituisce il codice di funzione, l'indirizzo di inizio e la quantità di registri scritti.

Frame di richiesta						
Descrizione	Lunghezza	Valore	Note			
Indirizzo fisico	1 byte	1 to F7 HEX (1 to 247)				
Codice funzione	1 byte	10 HEX				
Indirizzo iniziale	2 bytes	0000 to FFFF HEX	Ordine bytes: MSB, LSB			
Quantità di registri (N word)	2 bytes	0001 to 0078 HEX	Ordine bytes: MSB, LSB			
Conteggio dei byte	1 byte	N word * 2				
Valore del registro	N * 2 bytes	value	Ordine bytes: MSB, LSB			
CRC	2 bytes					

Frame di risposta (azione corretta)					
Descrizione	Lunghezza	Valore	Note		
Indirizzo fisico	1 byte	1 to F7 HEX (1 to 247)			
Codice funzione	1 byte	10 HEX			
Indirizzo iniziale	2 bytes	0000 to FFFF HEX	Ordine bytes: MSB, LSB		
Quantità di registri (N word)	2 bytes	0001 to 0078 HEX	Ordine bytes: MSB, LSB		
CRC	2 bytes				

Frame di risposta (azione non corretta			
Descrizione	Lunghezza	Valore	Note
Indirizzo fisico	1 byte	1 to F7 HEX (1 to 247)	Possibile eccezione:
Codice funzione	1 byte	90 HEX	01: funzione illegale
Codice di eccezione	1 byte	01, 02, 03, 04 (see note)	02: indirizzo dati illegale
CRC	2 bytes		03: valore dati illegale
	,		04: guasto del dispositivo slave

AGGIORNAMENTO FIRMWARE

Il prodotto è predisposto per l'aggiornamento firmware tramite la porta USB utilizzando una pendrive standard dove sarà collocato il file e un cavo micro USB OTG. Per poter aggiornare il firmware basterà togliere l'alimentazione dal modulo, inserire nel prodotto la pendrive con all'interno il file e ripristinare l'alimentazione. A questo punto la scheda andrà a scaricarsi il file in automatico e aggiornerà il firmware senza modificare le configurazioni caricate in fase di programmazione. Durante la fase di aggiornamento la luce del led FAIL sarà intermittente.

MAPPA DEI REGISTRI

In **grassetto** i valori di default.

dress Modbus	Description	Register Type	R/W	Default
40001	Machine ID	UShort [16b]	R	9
40002	Firmware version	UShort [16b]	R	
40003	Status: bit[0] = Fail EEPROM calibration bit[1] = Fail EEPROM configuration bit[2] = Fail HW bit[3] = Fail log bit[4] = Fail RTC bit[5] = Fail EEPROM bit[7] = Fail FRAM	UShort [16b]	R	0
40004	Digital input real-time status: bit[0] = Din1	UShort [16b]	R	
	bit[11]= Din12 Dout real output:			
40005	bit[0] = Dout1 bit[3] = Dout4	UShort [16b]	R	
40006	DIP switch status: bit[0] = DIP1	UShort [16b]	R	
	 bit[7] = DIP8			
40011	Manual setting Dout: bit[0] = Dout1 bit[3] = Dout4	UShort [16b]	R/W	
40012	Overflow or underflow: bit[0] = Totalizer 0 O → Totalizer 1 not in overflow/underflow 1 → Totalizer 1 in overflow/underflow bit[1] = Totalizer 1			
	O → Totalizer 2 not in overflow/underflow 1 → Totalizer 2 in overflow/underflow bit[11]= Totalizer 11 O → Totalizer 12 not in overflow/underflow 1 → Totalizer 12 in overflow/underflow	UShort [16b]	R/W	0
40015 ¹⁾	if reg. 40079 bit[12]= 0 → Totalizer Din 1	ULong [32b]	R/W	0
40015 2)	if reg. 40079 bit[12]=1 → Time interval [ms] of Din 1 in high value (only from FW revision 04)	UShort [16b]	R/W	0
40015 ⁷	if reg. 40079 bit[12]=1 → Time interval [ms] of Din 1 in low value (only from FW revision 04)	UShort [16b]	R/W	0
40010 7	if reg. 40079 bit[12]= $0 \rightarrow \text{Totalizer Din 2}$	ULong [32b]	R/W	0
40017 2)	if reg. 40079 bit[12]= 1 → Time interval [ms] of Din 2 in high value (only from FW revision 04)	UShort [16b]	R/W	0
40018 ²⁾	if reg. 40079 bit[12]= 1 → Time interval [ms] of Din 2 in low value (only from FW revision 04)	UShort [16b]	R/W	0
40019 ¹⁾	if reg. 40079 bit[12]= $0 \rightarrow$ Totalizer Din 3	ULong [32b]	R/W	0
40019 ²⁾	if reg. 40079 bit[12]=1 → Time interval [ms] of Din 3 in high value (only from FW revision 04)	UShort [16b]	R/W	0
40020 ²⁾	if reg. 40079 bit[12]=1 → Time interval [ms] of Din 3 in low value (only from FW revision 04)	UShort [16b]	R/W	0
40021 1)	if reg. 40079 bit[12]= 0 → Totalizer Din 4	ULong [32b]	R/W	0
40021 ²⁾	if reg. 40079 bit[12]=1 → Time interval [ms] of Din 4 in high value (only from FW revision 04)	UShort [16b]	R/W	0
40022 2)	if reg. 40079 bit[12]=1 → Time interval [ms] of Din 4 in low value (only from FW revision 04)	UShort [16b]	R/W	0
40023 ¹⁾	if reg. 40079 bit[12]= 0 → Totalizer Din 5	ULong [32b]	R/W	0
40023 ²⁾	if reg. 40079 bit[12]=1 → Time interval [ms] of Din 5 in high value (only from FW revision 04)	UShort [16b]	R/W	0
40024 2)	if reg. 40079 bit[12]= 1 → Time interval [ms] of Din 5 in low value (only from FW revision 04)	UShort [16b]	R/W	0
40025 ¹⁾	if reg. 40079 bit[12]= 0 → Totalizer Din 6	ULong [32b]	R/W	0
40025 2)	if reg. 40079 bit[12]=1 → Time interval [ms] of Din 6 in high value (only from FW revision 04)	UShort [16b]	R/W	0
40026 ²⁾	if reg. 40079 bit[12]=1 → Time interval [ms] of Din 6 in low value (only from FW revision 04)	UShort [16b]	R/W	0
40027	Totalizer Din 7	ULong [32b-LSW]	R/W	0
40029	Totalizer Din 8	ULong [32b-LSW]	R/W	0
40031	Totalizer Din 9	ULong [32b-LSW]	R/W	0
40033	Totalizer Din 10	ULong [32b-LSW]	R/W	0
40035	Totalizer Din 11	ULong [32b-LSW]	R/W	0
40037	Totalizer Din 12	ULong [32b-LSW]	R/W	0

Address Modbus	Description	Register Type	R/W	Default
40079	Totalizer counting mode: bit[0] = Din1 0 → Din1 rising edge 1 → Din1 falling edge bit[1] = Din2 0 → Din2 rising edge 1 → Din2 falling edge bit[11] = Din12 0 → Din12 rising edge 1 → Din12 falling edge from FW revision 04 bit[12] = 0 → Totalizer on all digital input 1 → Din1- Din6 measuring interval	UShort [16b]	R/W	0
40080	Number of samples of the filter of Din 1 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40081	Number of samples of the filter of Din 2 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40082	Number of samples of the filter of Din 3 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40083	Number of samples of the filter of Din 4 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40084	Number of samples of the filter of Din 5 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40085	Number of samples of the filter of Din 6 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40086	Number of samples of the filter of Din 7 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40087	Number of samples of the filter of Din 8 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0

Address Modbus	Description	Register Type	R/W	Default
40088	Number of samples of the filter of Din 9 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40089	Number of samples of the filter of Din 10 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40090	Number of samples of the filter of Din 11 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40091	Number of samples of the filter of Din 12 0 = 10 kHz 1 = 5 kHz 5 = 1 kHz 50 = 100 Hz 500 = 10 Hz 5000 = 1 Hz	UShort [16b]	R/W	0
40092	Totalizer counter direction: bit[0] = Totalizer 1 0 → Totalizer 1 incremental 1 → Totalizer 2 decremental 1 → Totalizer 2 incremental 1 → Totalizer 2 incremental 1 → Totalizer 2 decremental bit[11] = Totalizer 12 0 → Totalizer 12 incremental 1 → Totalizer 12 cecremental	UShort [16b]	R/W	0
40093	FRAM settings: bit[0] = Dout1 power-up state (don't care if bit[15] = 1)	UShort [16b]	R/W	0xC000
40094	Modbus address, parity, stopbits: MSB: modbus address (default = 1) LSB: bit[0-1] = parity 0 → none 1 → Odd 2 → Even LSB: bit[2] = stop bits 0 → 1 1 → 2	UShort [16b]	R/W	256
40095	Baudrate Value: 0 = 1200 1 = 2400 2 = 4800 3 = 9600 4 = 19200 5 = 38400 6 = 57600 7 = 115200	UShort [16b]	R/W	3

PAGINA 17 di **18**

Address Modbus	Description	Register Type	R/W	Default
40121	Command: 0xC1C0 = Flash setting save command 0xD166 = Dip read command 0xC1A0 = Reboot command	UShort [16b]	R/W	
40127	HW version	UShort [16b]	R/W	

¹⁾ if reg. 40079 bit[12]=0 ²⁾ if reg. 40079 bit[12]=1 (only from FW revision 04)

LEGENDA:

Short [16b] = Signed Short (16 bit) UShort [16b] = Unsigned Short (16 bit)

Long [32b-MSW] = Signed Long (32 bit - MSW First Register) Long [32b-LWS] = Signed Long (32 bit - LSW First Register) ULong [32b-LSW] = Unsigned Long (32 bit - LSW First Register) ULong [32b] = Unsigned Long (32 bit)

Float [32b-MSW] = Float (32 bit - MSW First Register) Float [32b-LSW] = Float (32 bit - LSW First Register)

UInt [16b] = Unsigned Integer (16 bit)
UInt [32b-MSW] = Unsigned Integer (32 bit - MSW First Register)
Int [64b-LSW] = Signed Long Long (64 bit - LSW First Register)

D.E.M. SpA

Zona Ind. Villanova 20 32013 Longarone (BL) ITALIA

www.dem-it.com www.qeed.it

Poiché gli standard, le specifiche e il design cambiano di volta in volta, si prega di chiedere conferma delle informazioni fornite in questa pubblicazione.