

QE-POWER-M

Visit the QE-POWER-M page for news, updates and downloads

CONTENTS

Product overview	3
Product specification	3
Technical specifications	4
Electrical characteristics	4
Available measurements	5
Communication characteristics	5
General data	6
Order codes	6
Connection and installation	7
RS485 BUS termination	9
Example of how to use a current transducer	9
Status LEDs	9
Digital output alarm	10
Accuracy (acc. to EN50470-3 and EN62053-24)	11
Product features	12
Modbus	12
RTC (only PLUS version)	12

Inputs/outputs	12
Status LEDs	
Digital alarm	12
Device configuration	13
Dip-switch Modbus RTU address and baud rate setting	13
Functionality configuration	13
Q-WIZARD	13
Third-party Modbus Master	13
Function 03 Hexadecimal (Read Holding Registers)	14
Function 06 Hexadecimal (Write Single Holding Register)	15
Function 10 Hexadecimal (Write Multiple Registers)	16
Configuration register 40007	17
Register man	18

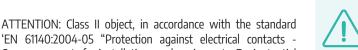
OE-POWER-M

SAFETY WARNINGS AND CAUTIONS

The following warnings and cautions must be observed to ensure personal safety and prevent damage.

Death or serious injury may result from failure to heed this warning.

It is necessary to comply with national regulations when installing and picking materials for power lines.


Material damage or serious personal injury may result from failure to heed this warning.

Repairs and modifications must be carried out only by the manufacturer. It is forbidden to open the case and make any changes to the device. Tampering with the device will invalidate the warranty.

The manufacturer **declines all responsibility** for electrical safety in the event of improper use of the equipment.

The product described in this document may only be used for the specified application. The maximum performance data and environmental conditions specified in the product data sheet must be observed. Proper transport and storage, as well as professional assembly, installation, handling and maintenance are required for the correct and safe operation of the device.

Common aspects for installations and equipment - Equipotential bonding", grounding of the instrument is prohibited as this would damage the device and reduce the safety of the installation.

'EN 61140:2004-05 "Protection against electrical contacts -

Use under ambient conditions other than those specified, application of signals or voltages other than those specified, may cause significant deviations from the specified measurement tolerances, which may be irreversible.

It is essential to read the entire contents of this manual before carrying out any work.

Installation and commissioning must be carried out by qualified personnel only.

Although the contents of this document have been checked for accuracy, it may contain errors or inconsistencies and we cannot quarantee its completeness or accuracy.

This document is subject to periodic revision and updating.

QEED reserves the right to make changes to the product and/

or its technical documentation at any time in the interests of

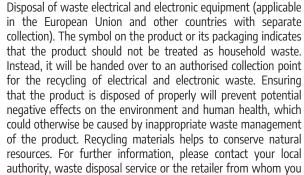
Before commissioning, make sure that:

- the maximum values for all connections are not exceeded; refer to the product data sheet;
- the connection cables are not damaged or live during wiring;
- the direction of current flow and phase rotation are correct.

During installation, ensure that a switch or circuit-breaker is near the product and easily accessible.

The unit must be uninstalled if safe operation can no longer be guaranteed (e.g. visible damage). Disconnect all connections in this case. The unit should be returned to the manufacturer or to an authorised service centre for repair.

continuous quality improvement. Always consult the latest version of the documentation available on the website: www.geed.it If you find any errors or missing information in this document,



WARNING: High-intensity magnetic fields may alter the values measured by the transformer. Avoid installation near: permanent magnets, electromagnets, or iron masses. If irregularities are detected, reposition or move the unit to a more suitable location.

purchased the product.

Failure to observe the warnings may result in damage to the equipment or failure to operate as intended.

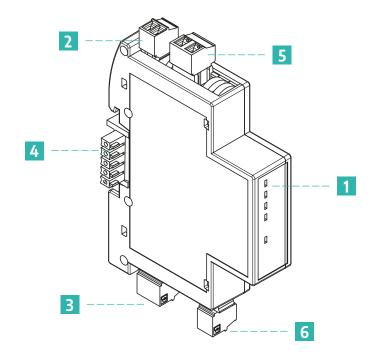
Please note that the information on the nameplate must be observed.

PRODUCT OVERVIEW

The QE-POWER-M is a single-phase AC power analyser (1 DIN case) with a universal input for current transformers that can accept any type of current sensor (with voltage output 0÷333mV or current 1A or 5A and Rogowski probes), available in 2 versions with different measurements.

It complies with class 0.5S (kWh) of EN62053-22 and class 0.5S (kVARh) of EN62053-24 and has an accuracy of ±0.5% RDG. The QE-POWER-M is capable of TRMS (voltage/current) measurements.

A digital contact (MOSFET), configurable as a pulse or alarm output, is available as an alternative to the RS485 terminal.


Power/error/communication/output status LEDs are on the front of the case.

RS485 serial interface for communication with Modbus RTU protocol, either from the **Q-WIZARD configuration tool**, or with third party Modbus masters by acting on register map registers.

Ready for DIN rail mounting with T-BUS terminal (optional) for fast connection with hot insertion/removal option.

Product specification

- Bidirectional energy measurement
- Complies with class 0.5S (kWh) of EN62053-22
- Complies with class 0.5S (kVARh) of EN62053-24
- Accuracy ±0.5% RDG
- Amperometric inputs for transformers with secondary (1A or 5A, 0...333mV, Rogowski coils)
- TRMS measurement (voltage/current)
- One pulse output (MOSFET) for alarms (alternative to RS485 output on terminals)
- RS485 serial interface on terminals or T-BUS
- Front LED alarm indication
- Available in 2 versions: STD and PLUS

- 1 Status LEDs
- 2 Power supply terminals
- 3 Modbus RTU terminals
- 4 T-BUS terminal for both power supply and Modbus RTU communication (optional)
- 5 Voltage input
- 6 Current input

TECHNICAL SPECIFICATIONS

Electrical characteristics

Power supply	10÷40 Vpc or 20÷28 VAC @ 50/60Hz
Current consumption	1,2 W max
Current consumption	2 VA max
Isolation	4 kV _{RMs} between power supply and measurement inputs
Isolaton	4 kV _{RMs} between RS485 and measurement inputs
	1,5 kV _{RMS} between power supply and RS485
Voltage input	Direct connection up to 300 V _{RMS} maximum
Totage input	Transformation ratio for voltage and current transformers (configurable from Q-WIZARD or registers)
Current input	1 A or 5 A
'	0÷ 333 mV
Output	SPST MOSFET dry digital contact (<40V, <100mA)
Communication interface	RS485 Modbus RTU
Visual interface	Status LEDs
Measurement type	TRMS
Measurement frequency	1÷70 Hz
Sampling rate	Variable: equal to 128 * Freq _{network} in the range 9-70Hz
company tase	Fixed: equal to 6400 samples/s outside the above range
Measurement update	Programmable
	Default: every 50 cicles (AC), max: 65535 cycles
Transformation ratio	CT and VT default 1,0; Programmable
Transformer phase-shift angle	Default 0,0° (a)50Hz; Programmable
Minimum display threshold	Adjustable on voltage, current and power
Voltage input	, , , , ,
Input impedance	400 kΩ
Rated capacity (Un)	300 VLN
Continuous overload (fault) (UMAX)	1,2 Un
Overload for 500 ms	2 Un
Current input	Non-isolated (CT required)
CT with current output	
Rated capacity (In)	5 Aac
Crest factor	<4 (20 Apk MAX)
Impedance	< 0,5 Ω
Continuous overload (IMAX)	6 Aac
Overload for 500 ms	40 Aac
CT with voltage output	
Rated capacity (Vn)	333 mV _{AC}
Crest factor	<3 (1 Vpk MAX)
Impedance	220 kΩ
Continuous overload (IMAX)	2,1 Vpk
Overload for 500 ms	13 Vpk
Precision (@ 25° C, 50 Hz)	
Voltage (Un: 230/400 V)	±0,5% RDG (10÷100% Un)
Current (In = 5 A)	±0,5% RDG (5÷100% In)
Frequency (40÷70 Hz)	±0,1 Hz
Power	ACTIVE: ±0,5% RDG
	REACTIVE: ±0,5% RDG

_	
Energy	ACTIVE: Class C according to EN50470-1/3 or
	Class 0.5S according to EN62053-22
	REACTIVE : Class 0.5S according to EN62053-24
Power factor	± (0,001 + 1% (1.00-PF))
Passaband (-3dB)	>2 kHz
Temperature coefficient	<100 ppm/°C

Available measurements

	Model	
	STANDARD	PLUS
Irms - Vrms - Ipk - Vpk	✓	✓
Active Power (W), Reactive Power (VAR), Apparent Power (VA)	✓	✓
Bidirectional energy (kWh), positive and negative	✓	✓
Active and reactive energy (kVARh)	✓	✓
Power factor (inductive/capacitive), Crest factor	✓	✓
Frequency	✓	✓
СоѕФ	✓	✓
TanΦ phase and average		✓
Average power factor		✓
Power factor distortion (inductive/capacitive)		✓
THD (V, I), TDD		✓
Min, med and max powers		✓
Internal temperature [°C]		✓
Inverter input (modulated PWM voltage)		✓
Time when active power P is above a certain threshold		✓
K-factor (according to IEEE Standard 1100-1992)		✓

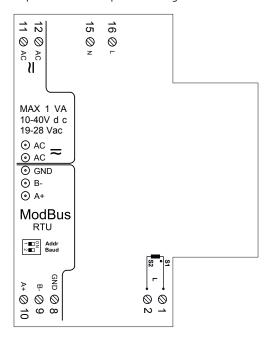
Communication characteristics

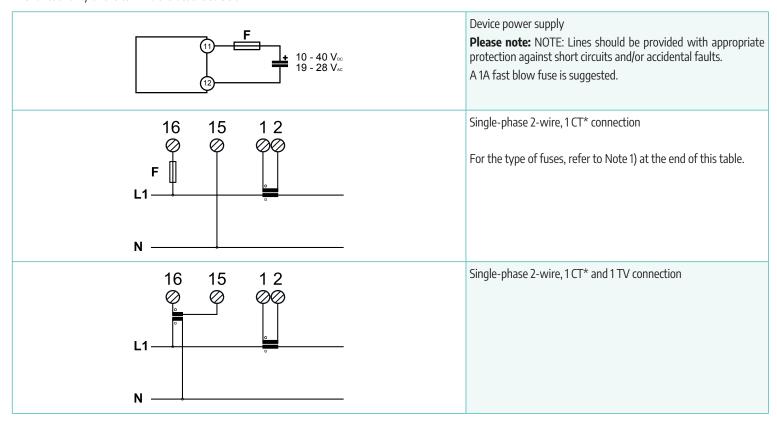
	Protocol	Modbus RTU
	Baudrate	1200÷ 115200 bps (default 9600)
DC 4 OF	Addresses	1÷ 247 (default 1)
RS485	Data format	1 start bit, 8-bit data, NO/ODD/EVEN parity (default NO parity)
	Response delay	1÷ 1000ms
	Connection	Via removable terminal, T-BUS or microUSB
	Can be activated by software	as an alternative to the RS485 terminal
Digital output	Usage	Alarm or pulse counter
	Туре	Solid State (MOSFET)
	Limit values	<40V, <100mA

General data

Working temperature	-15÷60° C
Storage temperature	-40÷85° C
Relative humidity	10÷90% not condensing
Elevation	Up to 2000 m s.l.m.
Protection degree	IP20
Measurements	109x68x18mm 68 18 1 1
Weight	60 g
Terminal cable cross-section	0.05÷1.5 mm² (30÷14 AWG)
Energy values storage	Flash, minimum duration 1,000k writings
Appliance class	Cat. III (IEC 60664, EN60664)
Pollution degree	2
Approvals and certifications	IEC 61010-1:2010, IEC 61010-1:2010/AMD1:2016, IEC 61010-2-030:2017 IEC 61326-1:2020, IEC 61000-6-2:2016, IEC 61000-6-4:2018 FCC 47 CFR - Part 15 Subpart B 1989 ICES-003 Issue 7:2020 CECAGOSTIC STATE BY THE CONTROL OF THE CONTROL
Installation	Inside electrical panels and mounted on a DIN rail

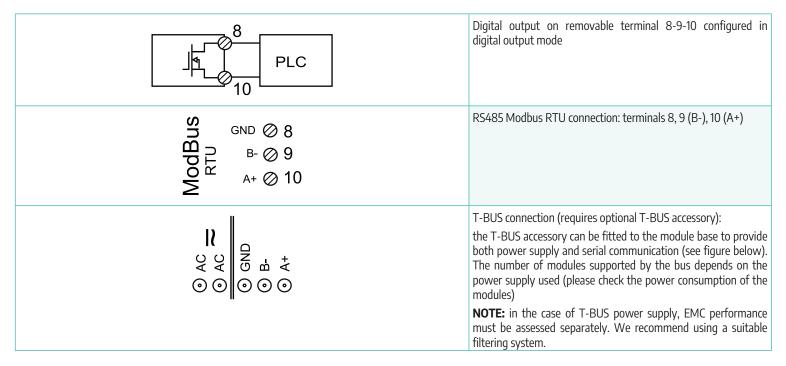
Order codes


Standard version	QE-POWER-M-STD
PLUS version	QE-POWER-M-PLUS
T-BUS	QA-TBUS-17,5 width 17,6mm
	QA-TBUS-22 width 22,6mm


CONNECTION AND INSTALLATION

The instrument is designed to be installed inside electrical panels and mounted on a DIN rail, with or without the aid of the T-BUS connector for interfacing multiple instruments with reduced cabling.

All connection terminals are shown on the pad print on the product and correspond to the figure below:



The functionality of the terminals is described below:

Note 1) 250 mA fast blow fuses / disconnect switch

Fuses / circuit breakers must be:

- Installed in accordance with all local and national electrical codes and standards.
- Rated for the installation voltage, available fault current, and sized for connected loads.
- * WARNING: CTs must not be connected to earth.

Figure 1: DIN-rail installation with T-BUS

RS485 BUS termination

To avoid unbalances on the transmission bus, it is advisable to insert a termination resistor at the beginning of the RS-485 bus (typically on the USB-RS485 adapter) and at the end (typically on the last slave - which can also be activated by dip-switch). It is advisable to use 120Ω resistors with 1% tolerance, which corresponds to the typical impedance of RS485 cables.

The following images are for illustrative purposes only:

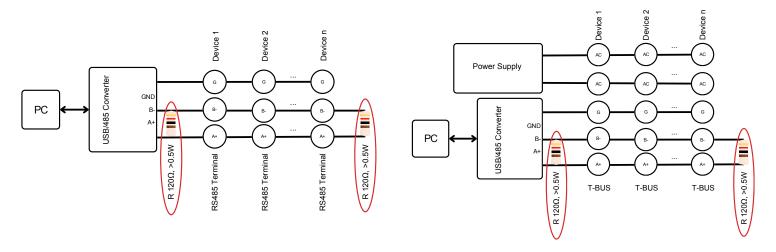


Figure 2: RS485 dynamic bus termination

Example of how to use a current transducer

Depending on the transducer used and the current that has to be measured in the installation, it might be useful to make more than one turn around the transducer's core in order to have the sensed current at the centre of the data acquisition instrument scale. In this case accordingly change the transformer radio acting on reg. 40009.

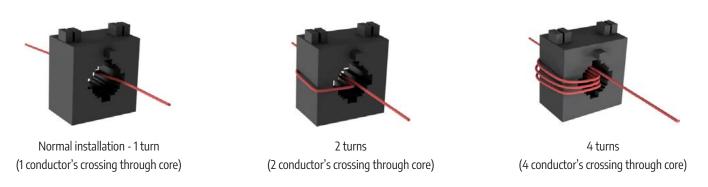


Figure 3: turns examples

STATUS LEDS

Function	Status	Meaning		
Power (green)	ON	Powered device		
	Flashing	Active bootloader: can be triggered by a Modbus RTU command or as a result of corruption of the program flash memory		
Fail (yellow)		At least one of the following module states is present (configurable from Q-WIZARD or baccessing the dedicated registers - see page 18)		
() ()	ON	EEPROM fail	Settings, calibration or energy storing problems	
		I o V over-range Phase i of current or voltage has a value above the threshold I o V under-range Phase i of current or voltage has a value below the threshold		
RX (red)	Flashing	The system is receiving data from the RS485		
TX (red)	Flashing	The system is transmitting data on RS485		
Dout (green)	ON	Active digital output		

DIGITAL OUTPUT ALARM

To enable alarms via digital output, the RS485 terminal must be configured as a digital output. Communication is only possible via T-BUS.

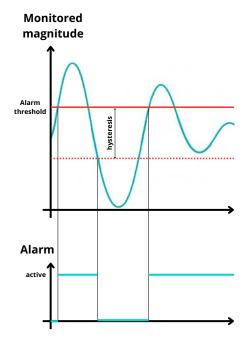


Figure 4: Alarm above threshold

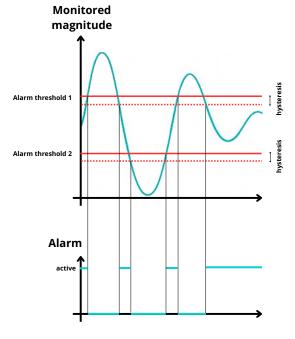


Figure 6: Alarm inside thresholds

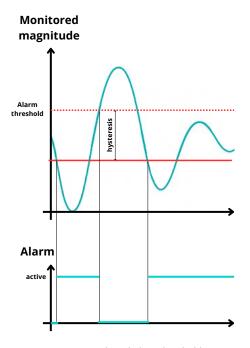


Figure 5: Alarm below threshold

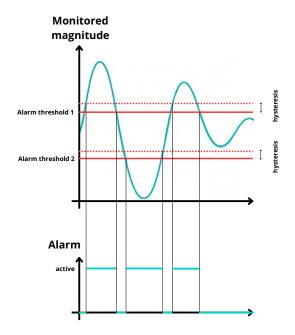


Figure 7: Alarm outside thresholds

ACCURACY (ACC. TO EN50470-3 AND EN62053-24)

The accuracy of the reactive power is guaranteed if the instrument is set to calculate Q using the Budeanu formula. (configurable from Q-WIZARD or by accessing the dedicated registers - see page 18)

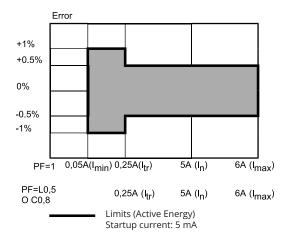


Figure 8: Wh, load-dependent accuracy (CT with current output)

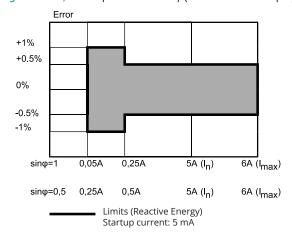


Figure 10: VARh, load-dependent accuracy (CT with current output)

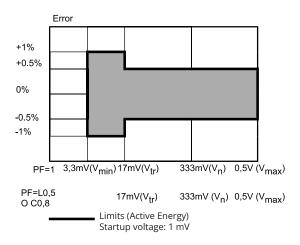


Figure 9: Wh, load-dependent accuracy (CT with voltage output)

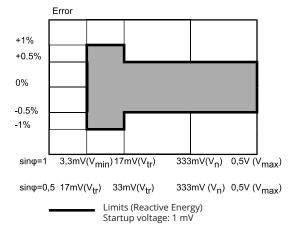


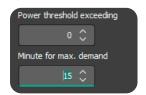
Figure 11: VARh, load-dependent accuracy (CT with voltage output)

PRODUCT FEATURES

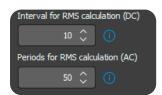
Using the configuration software or acting on the dedicated registers, the following functions can be configured:

Modbus

Address, baud rate, parity and response delay can be set.


RTC (only PLUS version)

Inputs/outputs


- Enabling of energy flash storage [Reg. 40007]
- Energy display unit of measure [Reg. 40030]
- Energy Filtering [Reg. 40007]
- Time period for calculation of max., average and min. RMS values [Reg. 40027 40029]. [Reg. 40027 40029] (if set to 0, the value is not averaged and absolute values are taken for max. and min. values) (PLUS and PRO only)

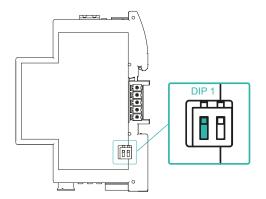
- Window for max. demand and its threshold [Reg. 40025, 40043] (PLUS and PRO only)

- Filter on measurement [Reg. 40023 - 40024]

- Power calculation method [Reg. 40007]
- Current input type selection used [Reg. 40007] and related settings (transformer ratio [Reg. 40009], connection type [Reg.], FFT on absolute value or first harmonic [Reg. 40007])
- Voltage input type [Reg. 40007]
- Frequency calculation channel [Reg. 40007]
- Voltage input transformation ratio [Reg. 40013]
- Enable digital output instead of RS485 serial [Reg. 40007] (If DIP1 is set to 1, it will force the RTU terminals to work as RS485 and not as switch)

Status LEDs

By adjusting register [40008], it is possible to set a fault signal to be displayed via the Fail LED on the front of the device.


Digital alarm

By acting on registers [40026, 40035 - 40041], it is possible to define the alarms, the threshold and the hysteresis of the quantity that determines the activation of the alarm associated with the digital output. It is also possible to enter a delay on alarm signalling.

DEVICE CONFIGURATION

Dip-switch Modbus RTU address and baud rate setting

The baud rate can be changed using the DIP switch on one of the two sides of the module. If DIP1 is set to zero, the module adopts the configuration from the EEPROM, otherwise it adopts the configuration set by the DIP switch according to the table:

DIP1	DIP2	Address	Baudrate
0	Х	EEPROM	EEPROM
1	0	1	9600
1	1	1	38400

Figure 12: Baud rate configuration dip-switch

Addresses other than 1 (default) or baud rates other than those shown in the table can be configured using the Q-WIZARD configuration software o or the Modbus RTU functions below by acting on the dedicated registers (see page 18).

Functionality configuration

Through an RS485 serial device such as our Q-USB485, it is possible to connect to the product using the Modbus RTU input terminals.

The configuration of the module can be done with our **Q-WIZARD** configuration tool or with any third-party Modbus master, by acting on the registers of the card in the last chapter of this document (see page 18).

Q-WIZARD

Using the Q-WIZARD interface tool (downloadable from here), all device parameters can be configured by following the simple, intuitive steps. In addition to the configuration of various parameters, inputs and outputs, the Q-WIZARD also allows real-time monitoring of device variables.

Third-party Modbus Master

Alternatively, the product can communicate directly with a third-party Modbus RTU Master using the communication settings according to the DIP switch configuration (when using microUSB the DIP switch settings are irrelevant).

The communication protocol supported is Modbus RTU Slave:

- Modbus RTU connections: A+ and B- according to Modbus RTU standards
- Supported Modbus RTU functions: 03 hexadecimal (read multiple registers, max 100), 06 hexadecimal (write single), 10 hexadecimal (write multiple registers)
- Modbus RTU address numbering is by convention '1 BASED' (standard), but the physical register is base 0; the logical address, e.g. 40010, corresponds to the physical address #9, as required by Modbus RTU standards

PLEASE NOTE: All setting changes of calibration and configuration parameters must be followed by the flash save command 0xC1C0 = Flash settings save command in register 40244; changes of device communication parameters in addition must also be followed by the command 0xC1A0 = Reboot command in register 40244.

In this case, all device configurations are performed by accessing the Modbus RTU register map available in the last chapter of this document using the functions:

- Read holding registers (function 03 hexadecimal)
- Write single holding register (function 06 hexadecimal)
- · Write multiple registers (function 10 hexadecimal)

Function 03 Hexadecimal (Read Holding Registers)

This function is used to read the contents of a contiguous block of holding registers (words). The request frame specifies the source register address and the number of registers to read. A maximum of 120 registers (words) can be read with a single request, unless otherwise specified. The register data in the response message is packaged as two bytes per register (word), with the binary contents right-justified within each byte. For each register, the first byte contains the most significant bits (MSB) and the second byte contains the least significant bits (LSB).

Request Frame			
Description	Lenght	Value	Comments
Physical address	1 byte	1 to F7 HEX (1 to 247)	
Function code	1 byte	03 HEX	
Starting address	2 bytes	0000 to FFFF HEX	Bytes order: MSB, LSB
Number of registers (N word)	2 bytes	1 to 10 HEX (1 to 16)	Bytes order: MSB, LSB
CRC	2 bytes		

Response frame (right action)				
Description	Lenght	Value	Comments	
Physical address	1 byte	1 to F7 HEX (1 to 247)		
Function code	1 byte	03 HEX		
Required Number of bytes	1 byte	N word * 2		
Register value	N*2 bytes		Bytes order: MSB, LSB	
CRC	2 bytes			

Response frame (wrong action)						
Description	Lenght	Value	Comments			
Physical address	1 byte	1 to F7 HEX (1 to 247)	Possible exception:			
Function code	1 byte	83 HEX	01: illegal function			
Exception code	1 byte	01, 02, 03, 04 (see note)	02: illegal data address			
CRC	2 bytes		03: Illegal data value			
	<u> </u>		04: Slave device failure			

Function 06 Hexadecimal (Write Single Holding Register)

This function is used to write a single holding register. The request frame specifies the address of the register (word) to be written and its contents. The correct response is an echo of the request, returned after the contents of the register have been written.

Request frame					
Description	Lenght	Value	Comments		
Physical address	1 byte	1 to F7 HEX (1 to 247)			
Function code	1 byte	06 HEX			
Starting address	2 bytes	0000h to FFFF HEX	Bytes order: MSB, LSB		
Register value	2 bytes	0000h to FFFF HEX	Bytes order: MSB, LSB		
CRC	2 bytes				

Response frame (right action)					
Description	Lenght	Value	Comments		
Physical address	1 byte	1 to F7 HEX (1 to 247)			
Function code	1 byte	06 HEX			
Starting address	2 bytes	0000h to FFFF HEX	Bytes order: MSB, LSB		
Register value	2 bytes	0000h to FFFF HEX	Bytes order: MSB, LSB		
CRC	2 bytes				

Response frame (wrong action)						
Description	Lenght	Value	Comments			
Physical address	1 byte	1 to F7 HEX (1 to 247)	Possible exception:			
Function code	1 byte	86 HEX	01: illegal function			
Exception code	1 byte	01, 02, 03, 04 (see note)	02: illegal data address			
CRC	2 bytes		03: Illegal data value			
			04: Slave device failure			

Function 10 Hexadecimal (Write Multiple Registers)

This function is used to write a block of contiguous registers (maximum of 2). The required values to be written are specified in the data field of the request. The data is packed as two bytes per register.

A correct response returns the function code, the starting address and the number of registers written.

Request frame					
Description	Lenght	Value	Comments		
Physical address	1 byte	1 to F7 HEX (1 to 247)			
Function code	1 byte	10 HEX			
Starting address	2 bytes	0000 to FFFF HEX	Bytes order: MSB, LSB		
Number of registers (N word)	2 bytes	0001 to 0078 HEX	Bytes order: MSB, LSB		
Byte counting	1 byte	N word * 2			
Register value	N * 2 bytes	value	Bytes order: MSB, LSB		
CRC	2 bytes				

Response frame (right action)					
Description	Lenght	Value	Comments		
Physical address	1 byte	1 to F7 HEX (1 to 247)			
Function code	1 byte	10 HEX			
Starting address	2 bytes	0000 to FFFF HEX	Bytes order: MSB, LSB		
Number of registers (N word)	2 bytes	0001 to 0078 HEX	Bytes order: MSB, LSB		
CRC	2 bytes				

Response frame (wrong action)						
Description	Lenght	Value	Comments			
Physical address	1 byte	1 to F7 HEX (1 to 247)	Possible exception:			
Function code	1 byte	90 HEX	01: illegal function			
Exception code	1 byte	01, 02, 03, 04 (see note)	02: illegal data address			
CRC	2 bytes		03: Illegal data value			
	,		04: Slave device failure			

CONFIGURATION REGISTER 40007

This 16-bit register regulates the card's main operating settings. Below in detail:

Settings	Value	Detail
lanut CT	0xxx xxxx xxxx xxxx	Current input (e.g. TA 5A)
Input CT	xxxx xxxx xxxx xxx1	Voltage input (e.g. TA 333 mV, Rogowski)
Calculation method for reactive newer	xxxx xxxx xx0x xxxx	Triangular method: This method does not measure reactive power, but calculates it. It is the most commonly used method in energy meters.
Calculation method for reactive power	xxxx xxxx xx1x xxxx	Phase-shift method (Budeanu). This method measures reactive power. The accuracy values given are relative to this method.
	xxxx xxxx x0xx xxxx	Used as RS485: 8 = GND, 9 = B-, 10 = A
connector.		Used as digital output between terminals 8 and 10. RS485 communication is still present on the T-Bus connector.
Frequency reading channel	xxxx xxxx 0xxx xxxx	Voltage channel
rrequericy reading charmer	xxxx xxxx 1xxx xxxx	Current channel
Voltage input type	xxxx xxxx 0 xxxx xxxx	Standard load
voltage iliput type	xxxx xxx1 xxxx xxxx	PWM type input voltage
Energy data storage	xxxx xx0x xxxx xxxx	Storage disabled
Lifergy data storage	xxxx xx1x xxxx xxxx	Storage enabled
	xxxx 0 0xxx xxxx xxxx	Float
Dynamic data vicualication	xxx0 1xxx xxxx xxxx	Inverted Float
Dynamic data visualisation	xxx1 0xxx xxxx xxxx	integers * 100
	xxx1 1xxx xxxx xxxx	inverted integers * 100
Intogrator	xx0x xxxx xxxx xxxx	Integrator disabled
Integrator	xx1x xxxx xxxx xxxx	Integrator enabled for Rogowski input
	x0xx x0xx xxxx xxxx	Upward direction: contact normally open
Digital output habayiour	x1xx x0xx xxxx xxxx	Downward: contact normally closed
Digital output behaviour	x0xx x1xx xxxx xxxx	Windowed: contact closed between thresholds
	x1xx x1xx xxxx xxxx	Windowed: contact closed outside thresholds
Mazcurament filtering	Oxxx xxxx xxxx xxxx	Disabled filtering: less stable measurements, but faster update
Measurement filtering	1xxx xxxx xxxx xxxx	Enabled filtering: more stable measurements, but less rapid updating

REGISTER MAP

Default values are in **bold**.

ONLY PLUS VERSION

Address Modbus	Description	Register Type	R/W	Default
40001	Machine ID: 36 = QE-POWER-M-STD 37 = QE-POWER-M-PLUS	UShort [16b]	R	2010011
40002	Hardware (MSB) and Firmware (LSB) Revision	UShort [16b]	R	
40003	Modbus address	UShort [16b]	R/W	1
40004	Delay response expressed as cycles	UShort [16b]	R/W	1
40005	Baudrate Value: 0 = 1200 1 = 2400 2 = 4800 3 = 9600 4 = 19200 5 = 38400 6 = 57600 7 = 115200	UShort [16b]	R/W	3
40006	Parity: 0 = NONE 1 = ODD 2 = EVEN	UShort [16b]	R/W	0
40007	Measurement settings: bit[0] = Current transducer type	UShort [16b]	R/W	16928
40008	Set Fail LED bit[0] = Fail Eeprom (settings, calibration or energy) bit[2] = I1 Over-range bit[3] = I1 Under-range bit[8] = V1 Over-range bit[9] = V1 Under-range	UShort [16b]	R/W	1
40009	Current trasformer ratio CT ratio = primary current of transducer / secondary current (or voltage) of transducer / (number of turns - if any) [see figure 03] Example: current transducer QI-KCT-10-50/333 (50A primary, secondary 333mV output), no turns> CT = 150,1501	Float [32b-LSW]	R/W	1
40011	Current transducer phase delay in [°] @ 50 Hz for accurate power calculation	Float [32b-LSW]	R/W	0
40013	Voltage transducer ratio M/N - Default 1.0 (Ex: 1000:100 = transducer_ratio = 10)	Float [32b-LSW]	R/W	1
40015	Voltage transducer phase delay in [°] @ 50 Hz for accurate power calculation	Float [32b-LSW]	R/W	0

ddress Modbus	Description	Register Type	R/W	Default
40017	Voltage threshold cut-off: Minimum threshold under which the instrument reads 0 independent from the input value	Float [32b-LSW]	R/W	0
40019	Current threshold cut-off: Minimum threshold under which the instrument reads 0 independent from the input value	Float [32b-LSW]	R/W	0
40021	Power threshold cut-off: Minimum threshold under which the instrument reads 0 independent from the input value (P, Q, and S)	Float [32b-LSW]	R/W	0
40023	Update interval for RMS calculation. Valid for DC systems. [tenths of a second]	UShort [16b]	R/W	10
40024	Number of line zero-crossing for RMS calculation. Valid for AC systems. (example: 50 → if frequency is 50Hz, updated every 1s)	UShort [16b]	R/W	50
40025	Minute for Max demand calculation (045)	UShort [16b]	R/W	15
40027	Seconds for average RMS: Seconds for the calculation of average RMS value (min 0 – max 30)	UShort [16b]	R/W	0
40028	Seconds for MAX RMS: Seconds for the calculation of MAX RMS value (min 1 – max 30). If the value is 0, then the absolute MAX RMS is given.	UShort [16b]	R/W	0
40029	Seconds for min RMS: Seconds for the calculation of min RMS value (min 1 – max 30). If the value is 0, then the absolute min RMS is given.	UShort [16b]	R/W	0
40030	Energy measurement unit factor: 0 = [Wh/10] 1 = [Wh] 4 = [KWh]	UShort [16b]	R/W	0
40036	Address of the magnitude to be monitored with the alarm (ex. 40359 for RMS voltage, 40375 RMS current, etc)	UShort [16b]	R/W	40361
40037	Alarm threshold for "above" and "below" types OR first alarm threshold for "within threshold" and "Outside threshold" types	Float [32b-LSW]	R/W	0
40039	Alarm Hysteresis	Float [32b-LSW]	R/W	1
40041	Second alarm threshold for "within threshold" and "Outside threshold" types	Float [32b-LSW]	R/W	
40043	Threshold for Power exceeding's monitoring	Float [32b-LSW]	R/W	0
40239	bit[2] = Current I1 Over Range; bit[3] = Current I1 Under Range; bit[47] = don't care; bit[8] = Current V1 Over Range; bit[9] = Current V1 Under Range; bit[1014] = don't care; bit[14] = Zero crossing detecting; bit[15] = Switch open; bit[16] = Wh storing error; bit[1718] = don't care; bit[19] = Alarm detection; bit[2027] = don't care; bit[28] = Leading Power factor PF1; bit[2930] = don't care;	ULong [32b-LSW]	R	
40244	Command: 0xC1C0 = Flash settings save command 0xC1A0 = Reboot command 0xBABA = Save energy command - See note¹ 0xDAAA = Close Switch command (only if Digital Output is enabled) 0xDAAB = Open Switch command (only if Digital Output is enabled) 0xB000 = Enter Bootloader command 0xF000 = Reset MAX Demand registers command	ULong [32b-LSW]	R/W	
40245	Active energy [Unit based on reg. 40030] - See note ¹	Int [64b-LSW]	R/W	
40261	Positive Active energy [Unit based on reg. 40030] - See note ¹	Int [64b-LSW]	R/W	
40277	Negative Active energy [Unit based on reg. 40030] - See note ¹	Int [64b-LSW]	R/W	
40293	Reactive energy [Unit based on reg. 40030] - See note ¹	Int [64b-LSW]	R/W	
40309	Inductive Reactive energy [Unit based on reg. 40030] - See note 1	Int [64b-LSW]	R/W	
40325	Capacitive Reactive energy [Unit based on reg. 40030] - See note 1	Int [64b-LSW]	R/W	
40341 40357	Apparent energy [unit based on reg. 40030] - See note 1 Events' counter of energy stored in flash (every 20 seconds)	Int [64b-LSW]	R/W R	
40357	RMS voltage [V]	ULong [32b-LSW] Float [32b-LSW]	R	
40359	RMS current [A]	Float [32b-LSW]	R	
403/5	RMS active power [W]	Float [32b-LSW]	R	
40363	RMS reactive power [VAR]	Float [32b-LSW]	R	
40401	RMS apparent power [VA]	Float [32b-LSW]	R	
40409	Power Factor	Float [32b-LSW]	R	
40417	Crest Factor	Float [32b-LSW]	R	
	Frequency [Hz]	Float [32b-LSW]	R	

Address Modbus	Description	Register Type	R/W	Default
40427	Star voltage peak [V]	Float [32b-LSW]	R	
40439	current peak [A]	Float [32b-LSW]	R	
40467	Distortion Power Factor (+ inductive, - capacitive)	Float [32b-LSW]	R	
40475	Tangent φ (+ inductive, - capacitive)	Float [32b-LSW]	R	
40485	Internal Temperature [°C]	Float [32b-LSW]	R	
40487	Star voltage RMS average [V] over "Seconds for average RMS (reg. 40027)"	Float [32b-LSW]	R	
40489	Star voltage MAX RMS [V] over last "Seconds for MAX RMS (reg. 40028)"	Float [32b-LSW]	R	
40491	Star voltage Min RMS [V] over last "Seconds for min RMS (reg. 40029)"	Float [32b-LSW]	R	
40535	RMS average current [A] over "Seconds for average RMS (reg. 40027)"	Float [32b-LSW]	R	
40537	MAX RMS current [A] over last "Seconds for MAX RMS (reg. 40028)"	Float [32b-LSW]	R	
40539	Min RMS current [A] over last "Seconds for min RMS (reg. 40029)"	Float [32b-LSW]	R	
40565	P RMS average [W] over "Seconds for average RMS (reg. 40027)"	Float [32b-LSW]	R	
40567	P MAX RMS [W] over last "Seconds for MAX RMS (reg. 40028)"	Float [32b-LSW]	R	
40569	P Min RMS [W] over last "Seconds for min RMS (reg. 40029)"	Float [32b-LSW]	R	
40589	Q RMS average [VAR] over "Seconds for average RMS (reg. 40027)"	Float [32b-LSW]	R	
40591	Q MAX RMS [VAR] over last "Seconds for MAX RMS (reg. 40028)"	Float [32b-LSW]	R	
40593	Q Min RMS [VAR] over last "Seconds for min RMS (reg. 40029)"	Float [32b-LSW]	R	
40613	S RMS average [VA] over "Seconds for average RMS (reg. 40027)"	Float [32b-LSW]	R	
40615	S MAX RMS [VA] over last "Seconds for MAX RMS (reg. 40028)"	Float [32b-LSW]	R	
40617	S Min RMS [VA] over last "Seconds for min RMS (reg. 40029)"	Float [32b-LSW]	R	
40637	PF RMS average over "Seconds for average RMS (reg. 40027)"	Float [32b-LSW]	R	
40639	PF MAX RMS over last "Seconds for MAX RMS (reg. 40028)"	Float [32b-LSW]	R	
40641	PF Min RMS over last "Seconds for min RMS (reg. 40029)"	Float [32b-LSW]	R	
40661	Time above threshold specified in reg. 40043 for Active Power P [min]	Float [32b-LSW]	R	
40669	Max Demand over "minute_for_Max_demand" for P for current month	Float [32b-LSW]	R	
40677	Time at which arises Max Demand over "minute_for_Max_demand" for P for current month (month day hour minutes)	ULong [32b-LSW]	R	
40685	K-factor for I, see IEEE Standard 1100-1992	Float [32b-LSW]	R	
40691	RTC: year (2000-2099)	UShort [16b]	R/W	
40692	RTC: month (1-12)	UShort [16b]	R/W	
40693	RTC: day month (1-31)	UShort [16b]	R/W	
40694	RTC: hour (0-23)	UShort [16b]	R/W	
40695	RTC: minute (0-59)	UShort [16b]	R/W	
40696	RTC: second (0-59)	UShort [16b]	R/W	
40697	THD Star Voltage	Float [32b-LSW]	R	
40709	THD Line Current	Float [32b-LSW]	R	
40717	TDD Line Current	Float [32b-LSW]	R	

Note:

"save energy command" can write at most 32bit simultaneusly. Please split energy registers as 2 couple of Long[32b-LSW] registers or as 4 single short [16b] registers and use command 0xBABA.

Example:

To set 1024 in "Active energy", then write: 0x0400 in reg. 40245

0x0000 in reg. 40246

0xBABA in reg. 40244 0x0000 in reg. 40247

0x0000 in reg. 40248

0xBABA in reg. 40244

LEGEND:

Short [16b] = Signed Short (16 bit) UShort [16b] = Unsigned Short (16 bit)

Long [32b-MSW] = Signed Long (32 bit - MSW First Register) Long [32b-LWS] = Signed Long (32 bit - LSW First Register) ULong [32b-LSW] = Unsigned Long (32 bit - LSW First Register) ULong [32b] = Unsigned Long (32 bit)

Float [32b-MSW] = Float (32 bit - MSW First Register) Float [32b-LSW] = Float (32 bit - LSW First Register)

UInt [16b] = Unsigned Integer (16 bit)
UInt [32b-MSW] = Unsigned Integer (32 bit - MSW First Register)

Int [64b-LSW] = Signed Long Long (64 bit - LSW First Register)

D.E.M. SpA

Zona Ind. Villanova 20 32013 Longarone (BL) ITALIA

www.dem-it.com www.qeed.it

As standards, specifications, and design change from time to time, please ask for confirmation of the information given in this publication.